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Abstract — The recirculating flow patterns in the creeping flow range of an incompressible fluid in rec-

tangular cavities with franslating top and bottom walls were obtained numerically and by visualization, then

were compared with each other. The aspect rativ was pul to be either one or two.

Approximate solutions were obtained for various boundary conditions by using the variativnal method.

The strearulines near the sharp corners were compared with some analytical solutions and the region in

which the analytical solutions can safely be applied was confirmed.

INTRODUCTION

The cavity problem with a translating top wall has
been one of the classical problems studied by Burggraf
[t1, De Vahi Davis and Mallinson [2], and Pan and
Acrivas [31. [t has often been used to evaluate and test a
newly developed numerical scheme. On the other hand,
the top and bottom wall translating cavities have not
been received much attention. Weiss and Florsheim [4]
obtained an approximate solution of the symmetric flow
solution at a low Reynolds nurnber with a variational ap-
proach to biharmonic equation. O’Brien [51 studied an
unsteady symmetric flow induced by oscillating plates in
the same direction. Jagadish [6] also solved numerically
the symmetric flow problem for the cavities having the
aspect ratio of 1.0 and 2.0 with the Reynolds numbers
up to 1000 numerically. A similar cases can be found in
natural convective heat transfer in cavities with side
walls held at different, but uniform temperatures [7].
However, little attention has been paid to the effect of
the translating directions and the magnitude of the
movements on the recirculating vortices in a cavity.

In this study we want to investigate numerically and
experimentally the streamlines and velocities in the cav-
ities with translating top and bottom walls by changing
the moving directions and speeds of the top and bottom
walls. and aspect ratios in the absence of apparent flux
through the cavity. For the numerical convenience the

*To whom all correspondence should be addressed.

scope will be limited to a creeping flows in rectangular
cavities with aspect ratios of one and two. The result of
this study will shed light on the convectional influence
on the mass transport through the pore membrane with
a small aspect ratio.

GOVERNING EQUATIONS AND APPROXIMATE
SOLUTIONS

The steady motion in a fluid-filled rectangular cavity
driven by the top and bottom walls in a uniform transla-
tional motion can be described by the following equa-
tions:

Vig=—w (1)

%(%w,—aiy (%w):Re’lew (2)
where ¢ and w are the dimensionless stream function
and vorticity respectively and Re is the Reynolds num-
ber. The variabies have been scaled with the horizontal
length of the cavity and the velocity of the sliding top
wall as scale factors. The relations of stream function
and vorticity to velocities are

u==— y=--== (3)
ay IX
_9v_2u
w ox 3y (4)

The boundary conditions are
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¢=0, ¢.=0, at x=0 (51
¢=0, ¢==0, at x=1 {6)
¢=0, ¢y=ug at y=0 (7)
¢=0, ¢,=1, at y=H (8)

where H is the dimensionless height of the cavity (Fig.
1). The horizontal velocity of the top wall is fixed to 1,
while the horizontal velocity of the bottom wall, ug, is
varied tu 2, 1, 0, -1 and -2. The aspect ratio (A.R.j or H
is put to be either one or two.

A similar case is the creeping flow induced in a top-
and-bottom-open cavity by a parallel shear flow through
channels. To have approximate solutions sinusvidal
velocity distributions are assumed both at top, y = H,
and at bottonmy, y = 0. The maximunt herizental veluci-
ty at tup is put to be one, while the maxinunm horizontal
velocity at bottoni (u,,) is varied from one to two. The
direction of the How at bottun is also varied. Variational
method is used in the same manner as Weiss and Flor-
sheini [4].

The beundary conditions used for the approximate
sulutions are Eqs. {5), {6) and the fullowing ones:

¢=0, ¢,=uysin’{zx) at y=0 (9)
¢=0, ¢,=sin® (7x) at y=H (10)
The first urder approximate solutions foru, = +1

¢,y =
+ sin § (H~y) sinhay—sin8y sinha (H-vy) sin? (rx)
{e snBHTF Bsinha H) : )
(1)
and foru,, = +2
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Fig. I. A model of the ca\_fity flo_w.
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(13)

The velocities can be easily determined by substitution
of the above results into Eq. (3).

NUMERICAL CALCULATION

To have a greater density of grids in tise boundary
layers adjacent to the walls, the governing equations are
transformed with the following variables [7]:

£ ('x):%‘ (1--tan {@2x—1)y: /tany) (14)

n (}')ZEH‘ {(1-Ftan {@2y/H-117} /rany ) (15)

Table 1 shows the non-equidistant grid points (21 x 41)
in (x, y) coordinates when AR. = 2, ¥ =x /4. The ap-
proximations of Egs. (1) and (2) through the centered
space difference yield

:Z£w+6x($1|i1l,.'/2¢z+1+51|i—1//2¢i—ll:
¢ Ex(5x|in,/z4'fxl,>1/z)+

Ny (UyLn/z m 'ﬁ’/y [z 1) 16)
Ny (Uy|.+1,.fz+77_v|j——1 )

Re
q“ 5;7,73’[_ {w (¢fv1'_¢)—|”en o (g — ¢

+ {w (i — s 1”,”_ {w <.(/’i‘l_(/}i—l:”v 1]
+ Ex{(_g;t)Hle wzq% (51)“1 W

Table 1. Grid points (A.R. =2: y=n/4).

.0 0.034 0.070 0.111 0.156 0.205 0.258

0

x 0.314 0.374 0.437 0.500 0.563 0.626 0.686
0.742 0.795 0.844 0.889 0.930 0.967 1.0
0.0 0.033 0.067 0.103 0.141 0.181 0.222
0.266 0.312 0.360 0.410 0.462 0.516 0.571
0.629 0.688 0.749 0.810 0.873 0.936 1.0

Y 1.064 1.127 1.190 1.251 1.312 1.371 1.429
1.484 1.538 1.590 1.640 1.688 1.734 1.778
1.819 1.839 1.897 1.933 1.967 2.0
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(17,

Grid speacing of h =4 £ =4 = 1/20 have been used
here.

The SOR (successive over-relaxation) method is well
applied to the above equations. The relaxalion para-
meters for the calculation of both ¢ and @ are in the
range ¢f 1.2—1.6. The convergence criterion is defined
as follows:

2 5 - 65 <e (18)

where
e=1.0x10"*~10"°

EXPERIMENTAL
A schematic representation of the experimental ap-
paratus for visualization is shown in Fig. 2. The outside

wall of the box was made of 0.01 m thickness acryl
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Fig. 2. Experimental apparatus.

plate; four brass wheels, two belts and a cavity were
placed in it. The cavity of the size of 0.06 x 0.06 x
0.022m (A.R. = 1) was used taking it into account that
Mills [8} had a satisfactory results in a cavity with a
span of 0.025m. After kneaded aluminium powder was
plastered in the cavity wall, the cavity was fixed to the
one of the walls of the box. Diluted glycerine (viscusity
=0.174 Pa-s, density = 1250 kg/ns*) was filled fully to
the top of the box. A photographic film (0.035m) was
used as belts and the wheels were toothed to fit the
holes in the belts. Tensions of the belts were controlled
with adjustment of the calibration knobs. Moving belts
applied shear stresses to the liquid in the cavity, which
subsequently made the liquid move. The speeds and the
directions of the belts were controlled by D.C. motors
which were connected to the axes of the buttom walls,
The photographic systen consisted of two 60 W electric
famp, a camiera (Nikon FMII, Japan) with close-up lenses
(King CUU+ 1, + 2 and + 4, Japan), and Kodak filr (ASA
125).

RESULTS AND DISCUSSION

Flow Pattern for AR.=1

The calculated streanmlines for A.R. = 1 are shown in
Fig. 3. The streanilines at Re = 0.001 are symnetrical
with respect to the vertical midplane of the cavity.
x=1/2. We cannot observe the inertial effects in the
figure. The calculated streanilines at the same Re of the
visualization experiment do not shift much froni those
at Re=0.001 because the visualization experiments
have been executed under the [ow Re range of 6 —20.

When uy; = 1, eddies {or vortices) are formed in an
even number and the flows are symmetrical with re-
spect to vy = H/2, the horizontal niid-plane. There exists
a maximuni in each vortex (Fig. 3(b)) and no flow oceurs
acress the horizonta: mid-plane. The case seens sinilar
to a fypical cavity problem with AR. = 172 [3], except
that the horizontal velocity at y = Hi2 is not zero i spite
¢ =10 vy it as will be seen in Fig. 5(a).

When ug is increased from 1 to 2. the lower vortex
expands wider and thie upper vortex shirinks (Fig. 3(a)).
One can also find that the stream function at tiie upper

vortex center decreases while that the stream function at

the lower one increases about twofold, fron 0.0878 t
0.184. Considering that the maximum of the stream
function is a measure of thie strength: of the vortex 2], it
is interesting to note that the strength of the upper
vortex is weakened by the expanded boundary of the
lower vortex.

When ug = -1, there exisls one vortex with two max-
ima (Fig. 3(c)). The directions of the vortex is only one,

The maximuin stream function at the vortex is -0.120

which is higher than when ug = 1. Inn tiie present case

Korean J. Ch. E.(Vol. 3, No. 2)



150

H.W.RYU et al

I
N ]
-
b
: /;J S/ "F
f/
\
\ \\‘__ [ 1 / /
N S [ L LS A

T IV

\ i Y ¥
VoL coosms Ry
t \ o=y - ) /

l‘ l/;
T =001
0.01 — -

/ e
“
/ f/ T S \
! ~ 0.085 " TR
L %
/ A Sk e )
r VL 0.0878 VA

o e e .

bl MO S S L I CX

September, 1986

1.0 I i i
! a 0.05 S ;
; e T T )
1 i . S s
! N 1 i
. ; : =015 \ ‘ f
. P / U T :
| T AR '
] \ i i
o | S B Ny
~ - ! _— \ 3 .
| A ) 7T v |
| ,-I . J; o =0.20 \ Lo I
| HE ‘ X = 1Y vy
L / ! | 0. 2148 7 ‘ Lo |
; ~—— A i
i e - - '
1 N T _a'/ ]
M LT ~ |
0 :
0 ) - 1.0
d)
1.0 I ——————————————————————— .y
| LTI T T T T T - -
'. \ |'/ N |
; ". ' Lmm— == p :
- ¢ , i H
\ \ . + ’ / '
' \ N 0.10 7 K /
l J 5 - !, I
L i AN ~0.09 , /
‘ ' \ N / ’lr
{ ! . e /
> | S /
L -0.05
] !
i /
'\ /‘
i U~ .
L S _— I
. -
i\ -0.01
N 0,
0l—= Z
0 S —— 1.0

le)
Fig. 3. Calculated streamlines for A.R. = 1,(--,
+ :Re=10.001, - < :Re at Exp., Table 2).

{a) upg=2; ) uy=1;clu,=~-1;
(dyu,=—2;{e) uy=0

the miass or heat transfer between the top and the bul-
tom wall is expected to be enhanced more than the case
with uy = 1 because the convective flow rotates all over
the cavity.

Whet the magnitude of uy is changed frony =1 to =2,
the two maxima become one and the vortex center
noves downward (Fig. 3(d)).

When ug = (). secondary eddies at the right and left
corners of the bottom wall are detected even witli our 21
x 21 meshes by the coordinate transformation (Fig.
3(e).

Fig. 4(a) shows the haorizontal velocity profiles on thie
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vertical centerline of the cavity, x=1/2, for AR = 1.
The point at which u=0 corresponds to the vortex
center or saddle point. It is interesting to note that all the
curves intersect each other at y =0.24. The horizontal
velocity at this point is about u=-0.11 in all cases.
despite that the rotational directions and velaocities of the
lower vortices are different. When ug > (), the intersect-
ing point lies above the primary eddy center nearest to
the bottom wall and when uy < 0, the cenverse is true.
Flow Pattern for A.R.=2

Fig. 5 shows the streamline patterns for AR. = 2. By
comparing Figs. 5(a) and 5(b} to Figs. 3(a) and 3(b}, we
find that the effect of the velocity at bottom wall vn the
streamline is reduced as the aspect ratio increases. By
increasing ug from 1 to 2, the stream function at the bot-
tom vortex center become approximately doubled, but
the boundary between the vortices at the vertical mid-
plane moves upward from y=1.0 to only y=1.06.
When the direction of the moving walls are opposite, a
saddle point is found at or near the cavily center in the
centours of the stream function (Figs. 5(c) and 5(d}). The
point has local maxinium value of the absolute stream
function in vertical direction and has local minimum
value in horizontal direction. There are two eddy cen-
ters with opposite rotating directions. As ug is changed
from -1 to -2, the locations of the vortex centers are not
much affected, the saddle point moves from y = 1.0 to
1.07, and the flow patterns are quite similar to each
other. The horizontal velocity profiles on the vertical
centerplane is shown in Fig. 4(b). The curves alsu in-
tersect each other at y = 0.25 with the horizontal veloci-
ty of u =0, approximately. The point is not expected to
change much even if AR, was higher than 2 for the
point corresponds to the primary eddy center which is

(a) {b)

ol

1.0

181

I
o
—
[ a]

P S — —

[y

Fig. 4. U velocity profiles across the vertical
center-planes at Re=0.00L (a) A R. = 1;
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Fig. 5. Calculated streamlines for A. R. :2,( R :Re=0:001, -, X :Re at Exp., Table 2).

(@) us=2; (b) uy=1; (hug=—-1; (d) us=

-2
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known to be independent of A R. when AR. 22 (3].
Flow Pattern by the Approximate Solution

It has been found that the approximate solutions, Eq.
(11) and Eq. (12), coincide well with the numerical solu-
tions both at AR. =1 and at A.R. = 2. A typical stream-
lines of approximate solutions are compared with those
of numerical ones in Fig. 6 when AR. =2 and uy = -1.
The eddy centers coincide with each other, although the
patterns of the streamlines or the maxinium value of the
stream function at the eddy centers show a little dif-
ferences. The positions of the vortex centers are (0.50,
0.30), (0.50, 0.70) at A.R. =1 and (0.50, 0.22), (0.50,
1.78), at A.R. =2, which are nearly the same as the
results of the numerical solutions shown in Table 2. But
the strength of the circulations are weak: the maximum
stream function at the vortex centers are —0.0952 at A.R.
=1 and -0.0829 at A.R =2, respectively. The dif-
ferences may be due to the inaccuracy of the solution or
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to the fact that the mean velocity of the flow is low. The
mean horizontal velocity of the fluid which applies
shear forces at top of the cavity is

1
Umean ™ ‘[ sin®7rx dx=0.5 (19)

One can find thal it is only a half of the velocity at top
wall for the numerical solution. The reason why the
value of the streamn function from approximate solution
is so low may be attributed miainly to this fact. Never-
theless, it is still noticible that the vortex centers coin-
cide well with each other in spite of the different boun-
dary conditions.

Streamlines Near the Corners

It is an interesting thing to investigate how far the
velocity of the bottom wall will influence the streanilines
in the corners. Two cases are considered.

The first one is the upper corner where the vertical
wall is stationary, while the horizontal wall is sliding
over it with the velocity u= 1. The analytical solution of
Moffat [9] is considered because the streamlines in the
region very close to the upper corner is expected to be
independent of the cther walls which are far away from
the corner. Moffat's solution can be modified as follows
for the fitness of the coordinate system used here.

2

= {‘% (H—y)+ {tan™* (H“y ))
. e ,
(*zv (H-y)+x)i/ (1 1 ) (20}

At AR, =2, the streamlines are found tu be indepen-
dent of the bottom walls within radius of 0.2 when the
corner point is taken as the origin; the influence of the
direction or the velocity of the bottom wall o the
streamlines in this region is negligible, as can be seen in
Fig. 7(a). The figure also shows that Moffat's solution is
successful to predict the streani function in it.

At AR=1, Fig 7({b) shows that the streamlines near
the moving plane are unaffected by the movement of
the bottorm wall up to the depth of about 0.08 from the
upper plane. But the streamlines show more differences
upon ug as one goes from the stationary wall to the ver-
tical center-plane of the cavity.

The second one is the corner formed by the vertical
stationary wall and the liorizontal center-plane moving
toward the vertical wall in a right angle. The situation
occurs when the upper and bottom walls niove in the
same direction with the same velocity. The horizontal
velocity gradient with y is zero at the horizontal center-
plane because of the symmetry about this plane. The
problem is very similar to the two-dimensional flow
near a point of zero friction described by Batchelor [10].
The following equation can be applied to the stream
function at the lower left corner of the upper half plane
of the cavity (Fig. 3(b). Fig. 5(b)).
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Table 2. Position of vortex centers and boundary centers.

Vortex center

Boundary center or saddle point

Experimental

Calculated

Re=10 *

Re=Exp.

(0. 50, 0. 59}

(0. 50, 0. 50)

{0. 50, 0. 50)

(0. 50, 0. 60}

(0. 50, 0. 60)

(0. 50, 0. 50)

(0. 50, 0. 50}

(0. 50, 0. 60)

(0. 50, 0. 50)

(0. 50, 0. 50)

A.R. ug ge. Calculated
XP- Experimental
Re=10"* Re=Exp.
) 15 0.50,0.16)  (0.50,0.21; (0 53,0.21)
’ (0.50,0.85)  0.50,0.83) {0.51,0.83)
L 17 0.50,0,16)  (0.30,0.20) (0.52,0.20)
’ 0.50,0.84)  (0.50,0.80) (0,52, 0.80)
1 .
. {0.50,0.31) ‘
{0.50,0.20) 0,30 0.30) (0-48.0.35)
oL 0. 50, 0. 69)
= {0, E) , U, D¢ - -
(0.50,0.80) 4 v 50.0.70) (0.52.0.63)
0.50,0.75) -
-2 115 {0.50,0.26) (0.47,0.26)
0. 50,0.21)
2 63 (0. 50, 0. 24) (0.50,0.24) (0.52,0.23)
' 0.50,1.76)  (0.50,1.76) {0.52,1.77)
L 86 0.50,0.24)  (0.50,0.24) (0.51,0.23;
‘ 0.50,1.76)  0.50,1.76) (0.51,1.77)
2 ) _
(0.50,0.24) (0.50,0.24)
*(0.50.0.22) O 18.0.24)
-t 0,50, 1.76)
Lo, L 0 e
.50, 1.76) 4 ©.50 178 ©5LL 77)
0.50,0.24)  (0.50,0.24) {0.48,0.23)
-2 6.9

(0.50, 1. 76} 0.50,1.76)  (0.51, .77}

0. 50, 1. 08)

0. 50, 1.0}

.50, 1.0)

0.50, 1. 07}

(0. 50, 1. 06)

(0. 50, 1. 03

0.50,1.0;

{0.50, 1. 07)

(0. 50, 1. 06)

(0.50, 1.0)

0.50, 1.0}

{0.50, 1. 07

*The values are {from the approximate solution.
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¢=Axly—H/2)? 21

where A nieans an arbitrary constant and we put A = M
10. Because of the arbitrariness of A, direct comparison -
of the values of the stream function from analytical solu-

tion with those from the numerical solution is mean-

ingless: Fig. 8 is provided only to compare the flow pat-

terns of these two cases. It is found that the turning

angle of the streamlines from the analytical sulution are .

a little larger than those from the numerical calculation. 2 e

There is little dependence of the patterns of the stream- (a) RE =115, ug=2
lines upon aspect ratios. However, values of the stream

function near the corner at AR.=2 is weaker than -—

those at A.R. =1 in the order of 10.
Flow Visualization s

——

.“"‘ln- .

Fig. 9 and Fig. 10 show photographs of steady-state
flow patterns for AR. =1 and A.R.= 2. The Reynolds
nurnber based on the velocities of the top wall are in the
range of 6.3—19.8 owing to the difficulty of the
visualization in the creeping flow region. Thus flow pat-
terns shown inn Figs. 9 and 10 do not reflect those uf -
creeping flow regions in a true sense. However, the sym-
metrices vbserved with respect to the vertical mid-
planes resemble those of creeping flow regions. Thus Fig. 9. Photographs of flow patterns for A.R.—1.
we assurme that the recirculating flows in the creep- {a) Re=11.5,u,=2 ib) Re =17.3, uy =1
ing flow range are similar to those observed here but {c) Re=19.8,u, = =1 (d) Re=11.5, u,= -2
perhaps with reduced strength. Table 2 compares the
theoretical predictions at the experimental conditions
and those at the creeping flows. The y-positions of the
vortex center are in good agreement with each other,
Lowever, x-positions of the experimental conditions

R = 15.8, u, = -1 W R = 15,

Analytical

3 1
| \ solution i
A 'i Numerical 1
W % solution H
1 ¥ AR =1U;=1 1
cees AR =2, Up=1 !}
' e 1
| 1 !
' "y i
10_ 6! 2 11
' g i
% i
- ' g i
]

0.5|
0
X . Fig. 10. Photographs of flow patterns for A.R.
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in higher Re are slightly shifted from 0.5 of the creep-
ing flows. Moreover, Table 2 shows the comparison
of the vortex centers and saddle points from experi-

men:s with those from calculations, The results
seem to be successful except when AR. =1, up < 0.

When ug has a negative value the flow in cavity is
thought to be hydrodynamically unstable due to the in-
flection point [11] as is shown in Fig. 4(a) and 4(b). But it
is not clear whether this discrepancy is due to the
3-dimensional effect or to the unstableness with ex-
perimental error. More investigations are required to
clarify this.

When AR. =1 and uyz=1 or 2, Figs. 9a) and 9(b)
show the vortex boundaries or flow patterns are much
alike to the theoretical solutions shown in Figs. 3(a} and
3(b). No convective flow is observed through this vortex
boundary. When ug=2, the experimertally fourd
y-postion of the boundary center between the vortices is
0.59, which is well compared to 0.60 by the theory. The
vortex centers, however, shifted a little upward compar-
ing to the theoretical results.

When vg = -1, the property of centro-symmetry is
preserved and the outer streaklines are exactly the same
as the predicted one (Fig. 9{c}). But the generated vortex
centers Jocate at y = 0.20 and 0.80 and deviate from the
theoretical results of y = 0.31 or 0.35, and .69 or 0.65.

As ug is changed to -2, the upper vortex shrinks. [t
does not disappear completely (Fig. 9(d)), a small weak
vortex is still observed. On the whole, however, the flow
pattern agrees well with the calculated one; the convec-
tive f ow sweeps all uver the cavity actively

Fig. 10 shows photographs of the flow patterns for
AR =2 Suprisingly. the visualization results are well
i accord with the theoretical predictions. The barrier
between the two vortices are sharply seen in Figs, 10{a)
and 10(b}. Also the saddle points are clearly observed at
the center of the cavity in Figs. 10(c) and 10(d).

CONCLUSIONS

The following conclusions have been obtained
under the conditions of AR =1 and 2, Re< 20 and -2=
Ug =2,

1. When ug > 0, the eddies are formed in an even
number and there is no convective flow through the
boundary between the eddies.

2. When ug <0, the mass or heat transfer between tre
top and bottom walls is expected to be enhanced
because of the convective flow rotating all over the
cavity.

3. There exists a point at which the magnitudes of u on
vertical centerplane of the cavity are in accord with
each other. When AR =1, y=0.24 corresponds to
that point with a value of u=-0.11 and when A.R.
=2, y=10.25 does with u=0.

4. The Moffat's and Batchelor's analytical solution
describe well the streamlines of the eddies near the
COTNers.

. The flow patterns from visualization experiment is
predicted well by the present numerical solution ex-
cept when AR =1, u, <0.

NOMENCLATURE
AR. : aspect ratio (-)
f : vorticity or stream function {-)
H . height of a cavity (-)
h : mesh size ()
L © width of & cavily (i)
m, n number of divisions in x-, y- directions {-)
Re . Reynolds number, Lu;/v(~)
u : x-direction velocity (-)
Ug : x-direction velocity of the bottom wall (-}
U, : maximum x-direction velocity at bottom in a
boundary condition for the approxin:ale solu-
tion (=)

Uy : x-direction velocity of the top wall {m/s)
v y-direction velocity (-)
Xy %-, y-coordinates {~)
y deformation parameter (=)
> convergence criterion (-)
v : kinematic viscosity (m?/s)
€. n . transformation relation (<)
£, Ny - % , 8_77_

ox’ Jdy
¢ : stream function (=)
w © vorticity ()
v : del operator {-)
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